COMPATIBILITY:

50

RULES OF

THE ROAD

Apple’s System Software Version 7.0 provides the most important
test of compatibility since the introduction of the Macintosh II. This
article should help you prepare for the release of System 7.0. For an
overview of the most critical compatibility issues and how to
address them, read on.

If you've already read too many stuffy articles full of dire warnings about
compatibility, you’'ve probably decided this one will be best suited for lining the
bottom of your filing cabinet. But before doing that, consider the case of Johnny
Appledweeb.

Ace Macintosh programmer for Cliff Grazer Enterprises, Johnny is currently putting
in the long hours to get a spread-processor-terminal-graphics-emulator out the
door. He doesn’t have time to read an article like this because Cliff Grazer, his
boss and President of CGE, is all over his case. Four months ago, the company began
accepting prepayment from customers who can’t wait for Johnny’s program to reach
their local stores. Those customers are now beating down the doors.

Although Cliff is desperate to get the product out, he has required certain levels of
performance. The application must be kept under the Imegabyte limit, for
example, and must keep up at 19.2 kbaud through the modem port. Finally, at the
last minute, legal decides to require copy protection. Once the application ships,
reviews are excellent, customers are happy, and sales are good. Cliff is ecstatic and
gives Johnny a big raise. Johnny has time to relax a bit and maybe even catch up on
some reading. But this article doesn’t interest him because he’s a crack
programmer, and his application works fine. Bottom of the filing cabinet time.

Six months later, Johnny comes back from his well-earned vacation to find that
Apple has introduced new machines and released a new version of the system
software. Cliff’s hopping mad because of reports of compatibility problems and
complaints from angry customers. As Johnny begins to look into the problems, he has
a vague recollection of some article he saw on compatibility. He rummages around,
finds the article, and quickly discovers it addresses his problems. But it’s too late
for the customers. They don’t understand compatibility, but they do understand

that the application they have been using every day no longer works. Cliff doesn’t

d evelopJanuary 1990

DAVE RADCLIFFE, “Technical Sherpa,” has
been with Apple about a year and a half, putting his
chemistry degree from Washington University to
work in AUX® and MPW™ technical support.
Actually, he discovered his true calling while
working with the computers in the UCLA
chemistry research labs. When asked how he’s
changing the world one person at a

really understand compatibility either. What he understands is he now has the
expense of shipping updated versions to keep his customers happy.

Johnny might have saved himself and others a lot of trouble if he’d spent a few
minutes with this article right away. Sure, it probably would have meant a delay
in the first release of the application, but it might also have made a second release
unnecessary. Johnny’s a good programmer, and he’s aware of almost everything in
this article, but if a single sentence had helped avoid problems, the article would
have been worth Johnny’s time.

It may be worth your time as well to check out the compatibility of your current
application’s features with System 7.0. The road gets a little dry and dusty from
here on, so grab a cold one and we’ll get down to business. This article focuses on
specific areas of Macintosh programming where compatibility might trip you up
today or in the future. Itisn’t meant to be a guide to Macintosh programming, so if
you need additional information on a topic, such as implementation details, refer to
Inside Macintosh, volumes I-V, and the Macintosh Technical Notes.

DEFENSIVE PROGRAMMING

Murphy was clearly a computer engineer. If anything can go wrong with your
application, it will, as most of us learn the hard way. Once you recognize that users
always stress your program in ways you never thought possible, you acquire
defensive programming habits.

TESTING

Always test return values for possible errors because you never know when some
unusual situation will arise. Assume that data structures will change. The Memory
Manager is an example of a manager whose data structures are changing, as
described later in this article. Avoid any portion of a data structure marked
“Unused”—its use is reserved for Apple.

MEMORY ALLOCATION

If you treat the Memory Manager with a little courtesy and respect, your
application will live a long and happy life. Keep in mind the strengths as well as
the limitations of the Memory Manager and listen to what it tells you. Believe it
when it returns a nil handle to tell you of memory allocation failure. Every
application’s memory needs are different, and as you design your application, think
about how memory you allocate will be used. A little planning can ease the
Memory Manager’s task by reducing the number of Memory Manager calls and
minimizing fragmentation and thrashing.

You should ask yourself a few simple questions about the memory you allocate in
the heap. Is this memory you will need frequently? Rather than frequently
allocating and releasing the memory, wouldn’t it be better to allocate it once at the
start of your

time, Dave replied, “home-brewed beer.” In
addition to home concoctions, he’s into hiking,
backpacking, and photography. ®

COMPATIBILITY: RULES OF THE ROAD January 1990

51

52

application; if it is a handle, move it high in the heap with MoveHHi; and
simply reuse it when necessary?

Is it memory that shouldn’t move? If so, consider the use of NewPtr instead.

Is this a large block of memory used for a very short period of time? Judicious use of
MultiFinder temporary memory can satisfy such needs and reduce overall heap
usage, allowing you to shrink your MultiFinder size partition.

Is this memory you are willing to let the Memory Manager dispose of at its
discretion, such as for a resource? Then you should consider making it purgeable.
But if you've made it purgeable, be sure to check for empty handles.

Once you have your application working, be sure to stress test your use of the
Memory Manager. You can do this by using your debugger to force heap scrambling
and purging. You can also simulate low memory conditions by running your
application in a small MultiFinder partition.

32-BIT CLEANLINESS

Another way to treat the Memory Manager with kindness and respect is to practice
32-bit cleanliness. Being 32-bit clean may be the single most important
compatibility issue facing developers. To understand what 32-bit cleanliness
means, let’s take a closer look at Macintosh memory management. The Memory
Manager maintains free-form memory structures called heap zones. It allocates
memory blocks of various sizes within these zones to satisfy memory allocation
requests by the system and applications. Occasionally, heaps will become full or
fragmented and the Memory Manager will need to rearrange or purge blocks in a
zone to create enough contiguous space to satisfy a memory allocation request. To
minimize confusion that could occur when blocks are rearranged, the Memory
Manager uses indirect references called handles to refer to relocatable blocks in the

heap.

The Memory Manager maintains a series of master pointers referring to blocks in
memory. A handle is a pointer to a master pointer, as shown in the following
illustrations.

d evelopJanuary 1990

Heap Block
$00020000

Handle 1 .
Master Pointer

$00001000

$00001000
$00020000

Handle 2

$00001000

In the example in the first illustration, two independent handles refer to the same
heap block at address $20000 via the master pointer at address $1000. Only the
master pointer should be referring to the heap block. Now, suppose the system
needs to relocate the heap block to address $30000. The second illustration shows
the state of the system after relocating the block.

COMPATIBILITY: RULES OF THE ROAD January 1990

53

Handle 1

$00001000

Handle 2

$00001000

54

Heap Block
$00030000

Master Pointer
$00001000

$00030000

The master pointer is now correctly set to point to the new block. The master pointer
is the only thing the Memory Manager had to update. The original handles 1 and 2
still correctly refer to the heap block because they refer to the master pointer,
which has the correct location of the heap block.

The classic Macintosh has what is referred to as a 24-bit memory management
system. To the hardware, only the lower 24 bits of a 32-bit address are significant.
The upper 8 bits are always ignored in a hardware address reference. The Memory
Manager maintains certain information about heap blocks, such as whether they
are locked in memory and cannot be moved or whether they can be purged from
memory to free up space in the heap. The original Macintosh Memory Manager
took advantage of the unused upper 8 bits of the address in a master pointer to
maintain flags about heap blocks. The illustration shows the master pointer
structure of the 24-bit Memory Manager.

d evelopJanuary 1990

P
()
S
vb

%’*
¥

AVOIDING COMMON PROBLEMS

The most common violation of 32-bit cleanliness involves direct manipulation of
Memory Manager flags. In a 32-bit system, all 32 bits of an address are valid, and
in the case of a master pointer, the flags bits are stored elsewhere. The system
provides traps for setting and cleaning these flags: HL.ock/ HUnl ock,

HPur ge/ HNoPur ge and HSet RBi t / HCl r RBi t . There are also traps for getting
and setting all the flags at once: HGet St at e and HSet St at e. Some applications
have taken advantage of knowledge of the master pointer structure to set and clear
the flag bits directly. Setting flag bits directly on a 32-bit system means you are not
changing the flags, but changing the address itself, and suddenly your master
pointer is pointing to a completely different location in memory.

The issue of 32-bit cleanliness is not limited to proper use of master pointer flags.
Every address reference must assume all 32-bits are valid. If you have used any of
the upper 8 bits of pointers or handles for anything other than part of an address,
you must find an alternate representation for that information.

Two other places you can be bitten by 32-bit violations are in window definition
functions (WDEFs) and control definition functions (CDEFs). The original
Macintosh Window Manager stored the window variation code in the upper 8 bits
of the handle to the window definition procedure. If you are using custom WDEFs
and need to access the window variation code, use the Get W/ar i ant trap.
Similarly, use Get CVar i ant to retrieve the variant control value for a control that
was formerly stored in the high bits of the control defproc handle.

Using pre-System 7.0 software, including A /UX 1.1, it is impossible to write a
strictly clean CDEF. The problem with custom CDEFs is that the cal cCRgns
message uses the high bit of the region handle as a flag. Inside Macintosh, volume
I, page 331 incorrectly advises you to “clear the high byte (not just the high bit) of
the region handle before attempting to update the region.” Rather, you should
clear only the high bit (not the high byte). This makes the reasonable assumption,
given the current system software, that the handle represents only a 31-bit address
and clearing the high bit is not harmful.

COMPATIBILITY: RULES OF THE ROAD January 1990

29 28 27 26 25 24 23 22 21 2019 18 17 16 15 14 1312 1110 9 8 7 6 5 4 3 2 1 O

55

56

With System 7.0, the Control Manager has a new way of telling your CDEF to
calculate control regions. Two new messages have been defined, cal cCnt | Rgn and
cal cThunbRgn, with values of 10 and 11 respectively. With a 32-bit Memory
Manager in operation, the Control Manager, which previously would have used
cal cCRgns, will now use one of the new messages. With a 24-bit Memory Manager
operating, cal cCRgns will still be used, so you must continue to support that
method.

CREATING VALID HANDLES

Just as the master pointer structure will change in System 7.0, other Memory
Manager structures will be subject to change. As a precaution, you should not access
Memory Manager data structures directly or attempt to “walk the heap” yourself.

Since a handle is a pointer to a pointer, it is possible for an application to create a
handle itself, a so-called fake handle. If you pass a fake handle to any Memory
Manager routine, the Memory Manager will assume it is a valid handle under its
control and may try to relocate or dispose of it. You should never pass a fake handle
to any Macintosh trap, because you never know when that trap may itself call the
Memory Manager.

Prior to System 7.0, handles allocated with MFTenpNewHand! e trap were not true
handles and could not be passed, directly or indirectly, to Memory Manager traps.
They were to be treated as fake handles. Under System 7.0, this is no longer true;
the Memory Manager knows how to manage such memory.

Remember that MultiFinder temporary memory is just that, temporary. It should
be allocated, used, and released as quickly as possible, preferably within one event
loop cycle. With System 7.0, you can use the HPur ge Memory Manager trap to mark
handles as purgeable. You can continue to use the memory as long as MultiFinder
does not need it for another application. But be sure to check for empty handles to
ascertain if your memory has been purged.

USING STRIPADDRESS

One of the keys to 32-bit cleanliness is proper use of the St ri pAddr ess trap.

St ri pAddr ess is necessary because handle flags in master pointers can create
dirty address references. When a 24-bit Memory Manager is operating,

St ri pAddress clears the high byte of the address, and returns a clean address.
The operation of St ri pAddr ess is simple enough. What is not always so clear is
when use of St ri pAddr ess is necessary or even appropriate.

d evelopJanuary 1990

To understand the operation of St r i pAddr ess, consider, again, the second
illustration. Imagine that a 24-bit Memory Manager is in operation and you've
called HLock to lock the handle. The value of the master pointer will now be
$80030000 because HLock has set the lock bit in the master pointer as indicated in
the third illustration. In normal operation, you never need to concern yourself with
that high byte because the hardware ignores it. In other words, the hardware
quietly strips the address for you. But suppose you are writing a driver that needs
to access a NuBus board. To do that, you need to switch the hardware to 32-bit
addressing mode using SwapMVUMbde. Now, suddenly, the hardware is no
longer ignoring that high byte, so to access the address properly you first need
to call St ri pAddr ess to clean up the address.

Another situation in which St ri pAddr ess is necessary is comparing master
pointers. In the previous example, comparing the value of the master pointer before
and after calling HLock would lead you to conclude the master pointer is now
pointing to a different block because the comparison looks at all 32 bits. To be sure
you are comparing the relevant portions, namely the addresses, call

St ri pAddr ess before comparing master pointers.

If a 32-bit Memory Manager is in operation, St ri pAddr ess will return the address
unchanged, because all 32 bits of the address are valid. If you have used

St ri pAddr ess correctly, you need never worry whether a 24-bit or 32-bit Memory
Manager is operating, because St r i pAddr ess does the right thing.

Finally, do you need to call St ri pAddr ess on other addresses, such as handles?
No, because there should be no extraneous bits set in the high byte of handles. If
you are using the high byte of handles for your own purposes, go directly to the

beginning of this section on 32-bit cleanliness. Do not pass Go; do not collect $200.

FILE ACCESS

Use the File Manager for all your file access. Avoid assumptions about the
underlying file and directory structure. Not only has the Macintosh file system
changed in the past, but you might not even be accessing a Macintosh volume.

Foreign file systems such as DOS, ProDOS®, High Sierra ISO 9660, and Unix are
all supported. If your application is running under A /UX, there may be no
Macintosh volumes. These file system differences create many subtle problems. For
example, Unix filenames are case-sensitive, whereas Macintosh names are not.
Unix uses '/' as a pathname delimiter, while Macintosh uses "'. Different file
systems may have different restrictions on the length of filenames. Always use
SFGet Fi | e and SFPut Fi | e. Not only will this ensure maximum compatibility
across file systems, but it will be comforting to your users that your application
looks and behaves like other Macintosh applications.

COMPATIBILITY: RULES OF THE ROAD January 1990

57

PRINTING

Apple is working to make printing easier for Macintosh programmers in the near
future. Meanwhile, we can offer some help in two areas that often cause problems
when printing: handling print records and using PostScript.

HANDLING PRINT RECORDS
Some applications set fields in the print record to change the default settings of

items in the print dialogs. Rather than modify these fields, applications should
just save the print record after the user has configured it. The best method for
saving the record is to save it as a resource in your document’s resource fork. Since a
valid handle already points to the print record, creating a resource is easy:

/* This is an exanple of saving a print record into a resource file. Saving the */
/* print record in docunent resource files provides a method of retaining the */
/* user setting fromthe last print job. For exanple, if a user elects to print a */
/* docurent using | andscape orientation, that information is stored in the print */
/* record. If the record is saved with the docurment, the orientation infornation */
/* will be available for the next time the docurent is printed. Wen the ' Page */
/* Setup' dialog is presented, the user’'s choices fromthe last tinme the docurent */
/* was printed will be displayed as defaults. This provides a convenient, device */
/* independent nethod for saving print job information. */
/* NOTE: Information fromthe Page Setup dialog is saved into the print record. */
/[* Information fromthe Print dialog (i.e. # of copies, page range...) is */
/* considered to be per job information, and is not saved. This nethod */
/* will not allowyou to provide new defaults for the PrJobD al og. */
/* */
/* \ersion Wien Wio What */
/* 1.0 7/ 18/ 89 Zz First rel ease. */
/* */

d evelopJanuary 1990

"
"
"
i
"
"
i
"
"
i
"
"
i
"
"
i
"
"
i
"
"

<Val ues. h>
<Types. h>
<Resources. h>
<Qui ckDr aw. h>
<Fonts. h>
<Events. h>

<W ndows. h>
<Menus. h>
<Text Edi t. h>
<Di al ogs. h>
<Desk. h>
<Tool Uil s. h>
<Menory. h>
<SegLoad. h>
<Fil es. h>
<OSUti |l s. h>
<CSEvent s. h>
<Di sklnit.h>
<Packages. h>
<Printing.h>
<Traps. h>

ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude
ncl ude

/* POPT = Print OPTions. This type can be anything
/* but to avoid confusion with Printing Manager

/* resources, the follow ng types should NOT be

/* used: PREC, PDEF, & POST... */
#def i ne gPRResType ' POPT

/* This can al so be any value. Since there should
/* only be one print record per docurment, the IDis
/* a constant. */

#def i ne gPRResl| D 128

/* Resource nane. */
#defi ne gPRResNane "\pPrint Record"

/* Define the globals for this program.. */
THPrint gPrintRecordHdl ;
short gTar get ResFi | e;

*/
*/
*/

*/
*/

COMPATIBILITY: RULES OF THE ROAD January 1990

59

/* ReportError */
/* */
/* This procedure is responsible for reporting an error to the user. This is

/*

done by first converting the error code passed in theError into a nessage

/* that can be displayed for the user. See Technical Note #161, "When to cal
/* PrOpen and Prd ose"
voi d ReportError(theError)
OSErr theError;

{
/* Real prograns handl e errors by displayed conprehensible error nessages.
/* This is NOT a real program..
if (theError != noErr)
SysBeep(10);
}
/* InitializePrintRecord
/*
/* This procedure is responsible for initializing a newy created print record.
/* It begins by calling PrintDefault to fill in default values, and then presents
/* the standard ' Page Setup' dialog allowing the user to specify page setup

/* options. The nodified print record is then returned.
void InitializePrintRecord(thePrintRecord)
THPrint thePrintRecord;

{

Bool ean i gnor ed;
Pr Open() ;
if (PrError() == noErr) {

PrintDefault(thePrintRecord);
i gnored = PrStlDial og(thePrintRecord);

}
Prd ose();

/* SavePrintRecord

/-k

/* This procedure is responsible for saving a print
/* On entry, the print record should be initialized,
/* be open with pernmission to wite.

60

record into a resource file.
and the resource file shoul d

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

d evelopJanuary 1990

voi d SavePrint Record(thePrintRecord, theResFile)
THPrint thePrintRecord,
short theResFile;
{
short current ResFi | e;
Handl e exi stingResHdl ;
Handl e newResHdI ;
OSEr r theError;

/* First save the currently selected resource file (before calling UseResFile).
currentResFile = CurResFile();

/* Now sel ect the target resource file.
UseResFi | e(theResFil e);
theError = ResError();
if (theError == noErr) {
exi stingResHdl = Get Resource(gPRResType, gPRResl|D);
if (existingResHdl != NULL) {
/* There is already a print record resource in this file, so we need to
/* delete it before adding the new one.
RmveResour ce(exi sti ngResHdl) ;
theError = ResError();
if (theError == noErr) {
/* 1If the resource was successfully renoved, dispose of its nenory
/* and update the resource file.
Di sposHandl e(exi sti ngResHdl) ;
Updat eResFi | e(t heResFi |l e);

}
if (theError == noErr) {

/* Ckay, now we have successfully opened the file, and del eted any

/* previously saved print record resources. Finally we can add the new
/* one...

/* Since the Resource Manager is going to keep the handle we pass it,
/* we need to make a copy before calling AddResource. W'IlIl let the

/* systemdo it for us by calling HandToHand.

*/

*/

*/
*/

*/
*/

*/
*/
*/
*/
*/
*/

COMPATIBILITY: RULES OF THE ROAD January 1990

61

62

newResHdl = (Handl e)thePrint Record;
t heError = HandToHand(&newResHdl) ;
if (theError == noErr) {
AddResour ce(newResHdl , gPRResType, gPRResl| D, gPRResNane);
theError = ResError();
if (theError == noErr)
Updat eResFi | e(t heResFil e);
theError = ResError();

if (theError != noErr)
Report Error (theError);

/* Be polite and restore the original resource file to the top of the chain.
UseResFil e(currentResFil e);

/* GetPrintRecord
/*
/* This function is responsible for |oading a resource containing a valid print
/* record. On entry theResFile should be open with pernission to read.
THPrint GetPrintRecord(theResFile)
short theResFile;
{
short current ResFile;
Handl e theResource;
OSErr theError;
currentResFile = CurResFile();
UseResFi |l e(theResFil e);
theError = ResError();
if (theError == noErr) {
t heResource = Get Resour ce(gPRResType, gPRReslD);
theError = ResError();

d evelopJanuary 1990

if (theError == noErr) {
Pr Open() ;
theError = PrError();
if (theError == noErr) {
if (PrValidate((THPrint)theResource))

}
PrC ose();

}
if (theError != noErr)

Report Error (theError);
UseResFil e(current ResFil e);
return((THPrint)theResource);

}

/* TestPrintRecord

/*

/* This procedure is used to test a print record. It will print a line of text

/* using the options specified in thePrintRecord passed. On exit, a line of text
/* will have been printed.
voi d Test Print Record(thePrintRecord)
THPri nt thePrintRecord;
{
GafbPtr current Port;
TPPr Por t t hePMPor t ;
OSErr theError;
TPr St at us t hePMSt at us;
Get Port (¤t Port);
Pr Qpen() ;
if (PrError() == noErr) {
if (PrJobDi al og(thePrintRecord)) {
t hePMPort = PrOpenDoc(t hePrintRecord, NULL, NULL);
if (PrError() == noErr) {
Pr OpenPage(t hePMPort, NULL);
if (PrError() == noErr) {
Set Port (& hePMPort - >gPort);

MoveTo(100, 100);
DrawsString("\pThis is a test...");

*/
*/
*/
*/
*/

COMPATIBILITY: RULES OF THE ROAD January 1990

63

Pr d osePage(t hePMPort);

}

Pr Cl oseDoc(t hePMPort) ;

if (((*thePrintRecord)->prJob. bJDocLoop == bpool Loop) && (PrEror() = noErr))
PrPicFile(thePrintRecord, NULL, NULL, NULL, &thePMstatus);

}
}
theError = PrError(); /[* Any errors? */
Prd ose(); /* Close the Printing Manager before attenpting */
/* to report the error. */
if (theError != noErr) /[* If there was an error during printing...*/
Report Error (theError); /* ...report the error to the user. */
Set Port (currentPort);
}
mai n()
{
InitGaf(&qd.thePort);
InitFonts();
I ni t Wndows();
I nit Menus();
TEInit();
I nitD al ogs(NULL);
I nitCursor();
/* Get the ID of our resource file. Since we were just opened, the */
/* CurResFile() will be ours. In a real application, the resource file ID */
/* would be the ID of your application s docunent file. */
gTarget ResFile = CurResFile();
/* Create a valid print record */
gPrint RecordHdl = (THPri nt) NewHandl e(si zeof (TPrint));
if (gPrintRecordHdl != NULL) ({
/* Ckay, we got a print record, nowinitialize it. */
InitializePrintRecord(gPrintRecordHdl);
64

d evelopJanuary 1990

/* Now save the print record into the resource file.
SavePri nt Recor d(gPri nt RecordHdl , gTarget ResFil e);

/* Nowthat it’s saved, kill it off. W'Il| restore it by

/* calling GetPrintRecord.
D sposHandl e((Handl €) gPri nt Recor dHdl) ;
gPrint RecordHdl = NULL;

/* Now get the print record fromthe file. Since the

/* record will be | oaded as a resource handl e anyway, | et

/* CGetPrintRecord allocate the handl e.
gPrint RecordHdl = Get Print Record(gTarget ResFil e);
if (gPrintRecordHdl !'= NULL) {

*/

*/

*/

*/

/* Now use the print record to see if the infornation we */

/* saved was preserved...
Test Print Recor d(gPri nt RecordHdl) ;
} else
Report Error (Menerror());
} else
ReportError(MenError());

/* Kill the print record (if it was created) and go hore. ..
if (gPrintRecordHdl !'= NULL)
D sposHandl e((Handl €) gPri nt Recor dHdl) ;

}

*/

There are several points to remember when using this technique. Use a resource
type not used by the Printing Manager so it doesn’t become confused. Types to avoid
include 'PREC, 'PDEF' and 'POST'. Remember that lowercase resource types are
reserved for use by Apple. You also should not make assumptions about the size of
the record. Use Get Handl eSi ze if you really need to know. This allows for the
record to grow in size in the future. Finally, when rereading the record from your
document, be sure to pass it to Pr Val i dat e before using it in case the user has

changed printers or print drivers since last printing the document.

USING POSTSCRIPT

Some applications prefer to bypass QuickDraw and print using PostScript instead.
This often results in poor or nonexistent support for printers such as the ImageWriter
and LaserWriter II SC. It also means relying on a method for determining which

printer is in use, such as checking the wDev field in the TPr St | record.

COMPATIBILITY: RULES OF THE ROAD January 1990

65

66

One method for printing PostScript without relying on the type of printer being used
is using the Text | sPost Scri pt Pi cCommrent :

Pi cComment (PostScriptBegin, 0, NL);
Pi cComment (TextlsPostScript, 0, NL);
Drawstri ng (ThePost Script);

Pi cComment (PostScriptEnd, 0, NL);

The problem with this technique is that because non-PostScript printers ignore the
TextIsPostScript PicComment, Dr awSt r i ng, which is a QuickDraw procedure,
literally sends ThePost Scri pt to the printer, resulting in garbage being printed.
A better technique is using the Post Scri pt Handl e Pi cConmment . Because this
comment is only understood by PostScript drivers, it avoids the QuickDraw /
PostScript interaction just described:

Pi cComment (PostScriptBegin, 0, NL);

Pi cComment (Post Scri pt Handl e, Get Handl eSi ze (ThePost Scri pt),
ThePost Scri pt) ;

Pi cComment (PostScriptEnd, 0, NL);

Further problems occur with applications that never print using QuickDraw but

only use PostScript. Some versions of the LaserWriter® driver assume that if they
see no QuickDraw, nothing was printed on the page and no output occurs. This can be
avoided by embedding some nonprinting QuickDraw in your code. Immediately
after calling Pr OpenPage, issue the following calls:

PenSi ze (0,0);
MoveTo (10, 10);
Li ne (0, 0);

PenSi ze (1,1);

This technique also solves a problem with background printing. In this case, the
Printing Manager starts off each page with an empty default clipping region.
Without seeing any valid QuickDraw calls, this region is never altered and your
nice PostScript output is clipped entirely off the page. For more details on printing,
see the article on “The Perils of PostScript” in this issue.

FONTS

System 7.0 will introduce an alternate way of dealing with fonts. While this new
technology won’t cause problems for most applications, you should be aware of a
few issues. Any application that allows user font selection will be affected by the
new outline font technology. The most obvious feature is that any size font is now
available. That means a list of point sizes in a menu is no longer sufficient. If you
currently combine font selection and font size selection in a dialog box, be sure to
include an editable field that allows the user to type in any point size. If you now

d evelopJanuary 1990

have a list of common sizes in a menu, include an “Other...” menu item that
displays a similar dialog box with an editable field.

Since Apple introduced the LaserWriter, there has been a problem about where to
get font metrics. The most compatible method is simply to call Font Metri cs and
read the metrics from the width table. For one reason or another, however,
applications have seen fit to read metrics directly from the 'FOND' resource. The
addition of outline fonts adds another layer of complexity. Outline fonts will store
metric information in the 'sf nt '. Accessing metrics in the 'FOND' could give invalid
data. If you are currently accessing the 'FOND' directly, you will have to revise to
take advantage of 'sf nt's.

INTERNATIONAL SUPPORT

You can greatly expand the market for your product if you do not make assumptions
about your user’s language. Following a few simple rules can make your application
much easier to localize. Don’t simply assume, like many C programmers, that a
character is one byte. Using the C routine st r cnp, for example, to sort strings can
give completely wrong results in languages other than English. Use | UConpSt r
instead. Determine the local conventions for decimal point, thousands separator,
list separator, and time cycle from the appropriate international resource when
performing input and output. Script Manager 2.0 routines, if available, can make
this even easier by doing the right thing for you automatically. For example, the
St r 2For mat routine can take input in one language and convert it to a canonical
form that can be used by For mat 2St r to output the string for a user in a completely
different country.

LOWER-LEVEL ISSUES

Higher-level issues, such as the ones just discussed, are likely to affect all
applications. But a lot of code that gets written needs to work at a lower level—
either accessing memory in strange ways or depending on tricks in assembly
language, for example. The remainder of this article will take a look at some of
those issues.

LOW MEMORY GLOBALS

Applications should avoid reliance on low-memory globals. In particular,
undocumented low-memory globals must be avoided since they are most likely to
change. But even dependence on well-known globals can be avoided. For example,
the Ti ckCount trap returns the same value as the low memory global Ti cks.

Ti ckCount is supported under A/UX, while Ti cks is not, so use of the trap
guarantees compatibility. In general, if a trap is available, always use it. And if a
glue routine is available, you should use it as well. Then if a change is necessary,
you need only update your development system and recompile to implement the
change. For the same reason, use of glue routines is also good advice for assembly-
language programming.

COMPATIBILITY: RULES OF THE ROAD January 1990

67

68

There is an exception to this rule. The Journaling Driver (see IM I-261) patches key
Event Manager traps : Get Mouse, But t on, Get Keys, and Ti ckCount . The
Journaling Driver is now used exclusively by MacroMaker™, and unfortunately the
driver’s patches are not reentrant. This means you cannot safely use these traps in
interrupt or VBL code. If you experience strange system hangs only when
MacroMaker is installed, this is probably the cause and your code should instead
reference the appropriate low-memory globals for the information you need.

SELF-MODIFYING CODE

Applications that use self-modifying code can present serious compatibility issues.
There are two kinds of self-modifying code. The first kind involves actually
changing machine instructions on the fly. Such code, popular in copy protection
schemes, crashes and burns on Macintoshes that use an instruction cache. For
example, after a sequence of instructions has been executed and cached by the
Macintosh II, some code comes along, modifies the original instructions, and tries to
execute them again. But the CPU says, “Ah ha! I already know what these
instructions are” and tries to execute the cached instructions, which is not what the
programmer originally intended. Fortunately, the Macintosh II and natural
selection have made such self-modifying code virtually extinct.

A second, subtler form of self-modifying code keeps variables in the code segment
itself. A typical example is the use of DC.Wor DC.L directives to allocate variables
in the same segment as the actual code. Such code avoids the earlier problem
because it is not actually modifying instructions. The catch is that future operating
systems may make 'CODE' segments read-only, and when that code tries to write to
its variables, it will fail. Of course, read-only use of such data, such as storing
string constants within code segments, is valid. It’s fine to do this when no
alternative is available. You won'’t crash in the foreseeable future.

A variety of small tasks, such as VBL tasks and completion routines, run
asynchronously on the Macintosh. Because they are executed asynchronously, they
cannot be assured that register A5, which by convention points to the application’s
global variables, is valid when they are called. A common technique used in this
case was to store a copy of A5 in with the code so these routines could use the saved
value to access global variables.

It’s possible to avoid such self-modifying code, as the following MPW sample code
illustrates. The trick here is that in creating a VBL task you must pass a record
describing the task to the system. When the VBL task is invoked, the system sets
up register AQ to point to the start of this record. While the record itself does not
contain storage for A5, it’s simple to embed the VBL task record into a larger record,
or in this case a C struct, that does have room for A5, or anything else you deem
important, such as a handle. An inline function called at the start of the VBL task
converts AQ into a pointer to the record. Then the task can access anything it needs.

d evelopJanuary 1990

"
"
i
"
"
i
"

ncl ude <Events. h>

ncl ude <CSEvents. h>
ncl ude <CsUils. h>
ncl ude <Di al ogs. h>
ncl ude <Packages. h>
ncl ude <Retrace. h>
ncl ude <Traps. h>

#define | NTERVAL 6
#defi ne rinfoDi alog 140

#define rStat Textltem 1
/*
* These are globals which will be referenced fromour VBL Task
*/
| ong gCount er; /* Counter increnented each time our VBL gets called */
/*
* Define a struct to keep track of what we need. Put theVBLTask into the
* struct first because its address will be passed to our VBL task in AO
*/
struct VBLRec {
VBLTask t heVBLTask; /* the VBL task itself */
| ong VBLA5; /* saved Current A5 where we can find it */
1

typedef struct VBLRec VBLRec, *VBLRecPtr

/*
* et VBLRec returns the address of the VBLRec associated with our VBL task.
* This works because on entry into the VBL task, A0 points to the theVBLTask
* field in the VBLRec record, which is the first field in the record and
* is the address we return. Note that this nethod works whether the VBLRec
* is allocated globally, in the heap (as long as the record is locked in
* nmenory) or if it is allocated on the stack as is the case in this exanple.
* In the latter case this is OK as long as the procedure which installed the
* task does not exit while the task is running. This trick allows us to get
* to the saved A5, but it could also be used to get to anything we wanted to
* store in the record.
*/

COMPATIBILITY: RULES OF THE ROAD January 1990

VBLRecPtr Cet VBLRec ()

= 0x2008; /* MOVE.L A0,DO */
/*
* DoVBL is called only by StartVBL ()
*/

voi d DoVBL (VRP)
VBLRecPtr VRP;

{

gCount er ++; /* Show we can set a gl obal */

VRP- >t heVBLTask. vbl Count = | NTERVAL; /* Set ourselves to run again */
}
/*

* This is the actual VBL task code. It uses GetVBLRec to get our VBL record
* and properly set up A5. Having done that, it calls DoVBL to increnent a
* global counter and sets itself to run again. Because of the vagaries of

* MPWC 3.0 optimzation, it calls a separate routine to actually access

* global variables. See Tech Note #208 - "Setting and Restoring A5" for the

* reasons for this, as well as for a description of SetA5.
*/
void StartVBL ()

{
| ong cur A5;
VBLRecPtr recPtr,;
recPtr = GetVBLRec (); /* First get our record */
curA5 = SetA5 (recPtr->VBLAS); [* Get the saved A5 */

/* Now we can access gl obals */

DoVBL (recPtr); /[* Call another routine to do actual
(void) SetA5 (curA5); /* Restore old A5 */

}

70

d evelopJanuary 1990

/

*

*

*

*

*/

Instal | VBL creates a dialog just to denonstrate that the gl obal variable

i s being

updated by the VBL Task. Before installing the VBL, we store

our A5 in the actual VBL Task record, using SetCurrentA5 described in
Tech Note #208. We'Ill run the VBL, show ng the counter being increnented,
until the nouse button is clicked. Then we renove the VBL Task, close the

di al og,

and renmove the nobuse down events to prevent the application from

bei ng i nadvertently sw tched by MiltiFi nder.

void Install CvBL ()

{

VBLRec t heVBLRec;

Di al ogPtr i nfoDPtr;

Di al ogRecord i nf oDSt or age;

Str 255 nunstr;

OSEr r t heErr;

Handl e t hel t enHandl e;

short t hel t enilype;

Rect t heRect ;

gCounter = 0; /* Initialize our global counter */

i nfoDPtr = Get NewDi al og (riInfobDialog, (Ptr) & nfoDStorage, (WndowPtr) -1);

Drawbi al og (infoDPtr);

GetDltem

/*
* Store
* infor
* Resto
*/

t heVBLRec

(infoDPtr, rStatTextltem &theltenType, &t heltenHandl e, &t heRect);

the current value of A5 in the MYA5 field. For nore
mati on on Set Current A5, see Tech Note #208 - "Setting and
ring A5".

.VBLAS5 = SetCurrentA5 ();

/* Set the address of our routine */

t heVBLRec
t heVBLRec
t heVBLRec
t heVBLRec

.theVBLTask. vbl Addr = (VBLProcPtr) Start VBL;

.theVBLTask. vbl Count = I NTERVAL; /* Frequency of task, in ticks */
.theVBLTask. qType = vType; /* gElement is a VBL task */

.t heVBLTask. vbl Phase = 0;

71

COMPATIBILITY: RULES OF THE ROAD January 1990

72

/* Now install the VBL task */
theErr = Vinstall ((QEl enPtr) & heVBLRec.t heVBLTask);

if (!thekrr) {
do {
NumToString (gCounter, nunttr);
Set | Text (theltenHandl e, nunttr);
} while (!Button ());
theErr = VRenove ((QEl enPtr) & heVBLRec. t heVBLTask) ;
/* Renove it when done */

/* Finish up */
Cl oseDialog (infoDPtr); /* Get rid of our dialog */
Fl ushEvent s (nDownMask, 0); /* Hush all nouse down events */

}

PRIVILEGED INSTRUCTIONS

Under the current Macintosh operating system, the CPU operates in the supervisor
state and applications are allowed to use any and all 680x0 instructions, with the
lone exception of the Test And Set (TAS) instruction, which is not supported by the
hardware. The A/UX operating system forces applications to run in the user state,
and applications that use privileged instructions reserved for the supervisor state
will fail. Examples of such instructions are MOVE, ANDI , and EORI instructions with
the status register (SR) as either the source or the destination. Typically, these
instructions are used to alter the condition code register (CCR), which is the low
byte of the SR. Using these instructions with the CCR as the source or destination
instead of the SR will accomplish the same thing without causing your application
grief. Certain floating point instructions such as FSAVE and FRESTORE are also
privileged and should be avoided. As we mentioned, A/UX does not allow the use
of privileged instructions and is a good test of compatibility in this case.

DIRECT HARDWARE ACCESS

If you think you need direct access to hardware, let Apple know. It may be
acceptable on other personal computers to access hardware directly, but it is
decidedly anti-social on the Macintosh and absolutely verboten under operating
systems with multi-user protection like A/UX. Beware of schemes for copy
protection or performance enhancement that rely on direct hardware access.
Macintosh hardware has changed in the past, and it will change in the future.
Each new machine may mean yet another revision of your application.

d evelopJanuary 1990

TRAP PATCHING

Trap patching is very useful for overriding or enhancing system trap handling. Itis
used by the system, for example, to correct errors in the Macintosh ROM. Many
applications also use it to provide additional functionality. Because it is very
difficult to anticipate all the possible side effects of your patch, maintaining
compatibility is difficult, too. Before writing a patch, you should decide if it’s
absolutely essential. Often the results you need can be achieved without the patch.

Suppose, for example, you decide to patch Exi t ToShel | . This may sound like an
excellent way for your program to get one last chance at closing files or doing
whatever other cleanup is necessary before exiting. Whether Exi t ToShel | is
called in response to a user’s Quit command or because of some fatal error condition,
your patch would always have a chance to clean up. But rather than having

Exi t ToShel | s all over your code, you could achieve the same result by calling a
single, common exit routine that performed the cleanup and then called

Exi t ToShel | .

If you absolutely must trap patch, here are some general guidelines. Don’t make
assumptions about the format of the trap dispatch table. In particular, don't try to
read or write entries in the trap dispatch table directly—use Get Tr apAddr ess
and Set Tr apAddr ess instead. If your patch only applies to your application,
install it in your application heap. Otherwise, install it in the system heap.
Application heap patches will be swapped out by MultiFinder when your
application is switched out. Because system heap patches will apply to all
applications that use the trap, use them only when absolutely necessary.

You cannot assume that a valid A5 world exists when your patch is invoked.
Register A5 points to the base of an application’s global variables, and A5 world
refers to an application’s global address space. MultiFinder maintains different A5
worlds for each running application. Your patch cannot assume when it is called
that A5 points to your application’s global variables. If it needs access to global
variables, you must save a copy of A5 before installing your patch. Then the patch
needs to preserve the current value of A5, set the saved value, and restore the
original A5 on exit. (See Technical Note #208.) Your patch should avoid use of the
Memory Manager if the trap could be invoked at interrupt time or if memory could
move during your patch.

Finally, you must not tail patch. In a normal patch, your code completes its task
and then invokes the standard trap code to complete the patch. In a tail patch,
your code regains control after the standard trap code completes. The problem with
this technique is that many of the ROM patches are themselves tail patches, and
they rely on knowledge of the caller to accomplish their task. If the ROM patch
expects to be called from a ROM address, but is instead called by your patch code, it
can become confused. If you JSR to invoke the standard trap code, then you are tail
patching. The correct way is to JMP to the starting address of the code.

COMPATIBILITY: RULES OF THE ROAD January 1990

73

74

IN CONCLUSION

It may be useful to know that Apple’s implementation of Unix, A /UX, offers a major
test for compatibility with System 7.0. A/UX provides a very different
environment for Macintosh applications, but applications that follow the
compatibility guidelines work without alteration under A/UX. If your application
works correctly under A /UX, it stands a very good chance of working correctly under
System 7.0.

If you've gotten this far, you are likely to avoid Johnny Appledweeb’s fate. You
obviously are seriously concerned for your customers and willing to go that extra
step to minimize future compatibility problems. It may seem at times that Apple
goes out of its way to stretch its own rules, but that is not the case. It is simply
impossible to foresee all future hardware and software changes. Incompatibility is
unfortunately an ongoing battle. Your part of that battle goes beyond this article
and requires you to keep abreast of changes as Apple announces them.

d evelopJanuary 1990

	Cover
	develop Issue 1 TOC
	Editor's Note
	Realistic Color for Real-World Applications
	All About the Palette Manager
	Braving Offscreen Worlds
	The Perils of PostScript
	Compatibility - Rules of the Road
	DEFENSIVE PROGRAMMING
	TESTING
	MEMORY ALLOCATION

	32- BIT CLEANLINESS
	AVOIDING COMMON PROBLEMS
	CREATING VALID HANDLES
	USING STRIPADDRESS
	FILE ACCESS

	PRINTING
	HANDLING PRINT RECORDS
	USING POSTSCRIPT

	FONTS
	INTERNATIONAL SUPPORT
	LOWER- LEVEL ISSUES
	LOW MEMORY GLOBALS
	SELF-MODIFYING CODE
	PRIVILEGED INSTRUCTIONS
	DIRECT HARDWARE ACCESS
	TRAP PATCHING

	IN CONCLUSION

	Debugging Declaration ROMs
	Apple II Development Dynamo
	Apple II Q&A
	Macintosh Q&A
	Index

