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Apple will soon be introducing the first Macintosh CPU architecture
not based on a 68000-family microprocessor. The entirely new
architecture is built around a new RISC CPU — the PowerPC
microprocessor jointly designed by IBM, Motorola, and Apple. Truly
taking advantage of PowerPC technology will require an ongoing effort
by both Apple and developers. Apple is making the first leap to this new
platform; now it’s up to developers to make the next leap and bring the
performance made possible by PowerPC technology to their applications. 

In 1984, Apple Computer offered a startling vision of the future of personal
computing by introducing the Macintosh, which radically changed the desktop. Now,
nearly ten years later, the computing world embraces graphical interfaces. Ten years
is a lifetime in computing terms; at that age, many computing architectures are
considered ancient. The Macintosh enters its second decade by looking to the future
while remembering its past — making the transition from the sturdy Motorola 68000
family to the sleek new PowerPC processor–based family without forsaking
developers and users and their investment in the 680x0 architecture.

The PowerPC microprocessor is the most significant change to date in the
Macintosh product line. This article introduces the new PowerPC architecture and
discusses the ramifications for existing applications, as well as opportunities for new
or revised applications to take full advantage of the power of the new chip. It
contrasts the new architecture with the old and explains how this new architecture
both acknowledges the past and prepares for the future.

COMPARING CISC AND RISC 
Much has been written about the differences between a CISC (complex instruction
set computer) architecture, used in Motorola’s MC680x0 processors, and a RISC
(reduced instruction set computer) architecture, used in the PowerPC
microprocessor. The relative merits of the two architectures have also been widely
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debated. A detailed discussion of CISC and RISC is beyond the scope of this article,
but some understanding of RISC principles is useful for understanding PowerPC
architecture.

Two logical considerations motivated CISC development. The first was a desire to
simplify assembly-language programming by enriching the functionality of the
instruction set. CISC architectures did this by providing a greater variety of
instructions, as well as a wide array of addressing modes, thereby reducing the
number of steps required to perform a particular operation. Second, as writing
compilers became easier, there was a desire to provide instructions more closely
related to operations performed by high-level languages. CISC architectures were
marvelously successful at satisfying this goal also.

In the early 1980s, hardware designers began to run into the limitations inherent in
CISC architectures, particularly in their ability to streamline the flow of instructions.
At the same time, the software world was deemphasizing assembly-language
programming in favor of high-level languages with sophisticated, optimizing
compilers. This allowed hardware designers to simplify their architecture and shift
much of the performance burden to compiler writers.

The classic equation for execution time is

where ET is the total execution time, N is the number of instructions executed, CPI is
the number of cycles per instruction, and CT is the cycle time. Both CISC and RISC
architectures benefit from reduced cycle time. Faster clock rates translate directly to
smaller cycle times, and hence shorter execution times. Where CISC and RISC
architectures differ is in their approach to N and CPI. CISC tries to shorten execution
times by minimizing N, while RISC tries to minimize CPI.

PIPELINING
The four typical stages in executing an instruction are fetch, decode, execute, and
write. In a simplistic architecture, these stages all happen in sequence, and the next
instruction can’t start until the previous instruction has finished, as shown in 
Figure 1. Designers realized that this need not be the case and that each of these
stages can overlap. Once an instruction is fetched and passed to the decode stage, 
the next instruction can be fetched without waiting for the first instruction to
complete. This technique, known as pipelining, is shown in Figure 2.

The example in Figure 2 executes the same two instructions, but in only nine cycles,
compared to 12 cycles in the nonpipelined case. There’s a curious thing about this
example, though: the second instruction takes eight cycles to complete when
pipelined, but only five when it’s not. This is because the various stages take different

ET =  ·  CPI * CT
N

i=1
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amounts of time to complete. The overall result is better, but unnecessary delays can
occur in instruction execution.

Variable numbers of cycles per stage is a characteristic of CISC architectures.
Complex instructions may occupy multiple words, requiring multiple cycles to fetch.
Multiple operands complicate the process of decoding. More complicated
instructions take longer to execute than simpler instructions. In Figure 2, the execute
stage of the second instruction is delayed two cycles while waiting for the first
instruction to execute. This is known as a pipeline stall. Similarly, the write stage sits
idle for one cycle between the first and second instructions while waiting for the
execute stage of the second instruction to complete. This is known as a pipeline
bubble. Both stalls and bubbles reduce the efficiency of the pipeline and increase the
overall number of cycles per instruction.

INCREASING PIPELINE EFFICIENCY
RISC architectures work very hard to eliminate inefficiencies in the instruction
pipeline and keep the pipeline jammed full. RISC architectures share most or all of
the following common features:

• Instructions are a uniform length. Variable-length instructions in
CISC architectures mean that time must be spent just figuring out
how long the instruction is and how many operands it uses. RISC
architectures don’t have that problem.

• Simplified instructions, instruction formats, and addressing modes
allow for fast instruction decoding and execution.

• Relatively large numbers of registers and large amounts of fast-
cache memory reduce cycles spent for access to slower, main
memory and allow frequently used variables to be kept loaded.

• Load/store architecture is used for access to memory. The only
memory-to-register and register-to-memory operations are load
and store instructions. All other operations are register only.
Register-to-memory and memory-to-memory operations in CISC
architectures require multiple cycles to complete.

• Instructions are simple. In an ideal RISC machine, each stage
requires one cycle to complete.

• For improved performance, instructions can be implemented
directly in hardware instead of being microprogrammed as in
CISC processors.

Figure 3 shows an example of executing instructions on a nonpipelined RISC
machine. When instructions are not pipelined, they complete serially, with two
instructions completing in eight cycles. The optimal case for pipelining instructions is
shown in Figure 4. Now you have the two instructions executing in just five cycles. If
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the pipeline is kept full like this, the number of cycles per instruction drops to just
one. This is the goal of most RISC architectures. 

One cycle per instruction is the ideal case for this example, but in reality, stalls and
bubbles occur, even in the best architectures. This is where the compiler comes into
play. The compiler has detailed knowledge of how the program should work. It need
not perform operations in the order specified in the source code; it need only
guarantee that the right result is obtained. If you build into the compiler some
knowledge of how to make best use of the CPU, the compiler can make a huge
difference in program performance.

Consider the following two C instructions:

b = *a + 5;
d = *c + 10;

The variables a, b, c, and d are all long or pointer-to-long variables. The compiler
might generate the following assembly instructions on the PowerPC microprocessor:

lwz r5,0(r3) ; Load value pointed to by r3 into r5
addi r5,r5,0x0005 ; Add 5 to value in r5
lwz r6,0(r4) ; Load value pointed to by r4 into r6
addi r6,r6,0x000a ; Add 10 to value in r6

The lwz instruction (Load Word and Zero) loads a register from a source value. On a
PowerPC processor, words are 32-bit values; 16-bit values are half words. The addi
instruction (Add Immediate) adds the immediate value and stores the result.

Figure 5 shows what happens when these instructions execute. Both addi instructions
stall in the decode stage because they can’t enter the execute stage until the register is
available from the lwz instruction.

The compiler can prevent the stalls. Instead of following the flow of the original
source code, you can rearrange the instructions as follows:

lwz r5,0(r3) ; Load value pointed to by r3 into r5
lwz r6,0(r4) ; Load value pointed to by r4 into r6
addi r5,r5,0x0005 ; Add 5 to value in r5
addi r6,r6,0x000a ; Add 10 to value in r6

Now look at what happens to the instruction pipeline (Figure 6): there are no delays.
By moving the add instructions to later in the instruction stream, you allow the load
instructions they depend on to complete, so the add instructions can execute
immediately.
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BRANCHING
All pipelined architectures face the problem of branches. Any time a conditional
branch is encountered, the processor faces a dilemma because now two instruction
streams are possible. It can’t pipeline both possible paths. It can guess which path to
take, but if it guesses wrong, the pipeline is disrupted.

One common approach to this problem is a technique called delayed branching. In
delayed branching, the processor always executes the instruction immediately
following the branch instruction. While starting this instruction, the CPU can be
figuring out the destination of the branch instruction and so can keep the pipeline
flowing. Of course, it’s important that the instruction after the branch not affect the
branch. It’s up to the compiler to find an instruction unrelated to the branch
instruction to fill this delay slot. If it can’t fill the delay slot, the compiler can always
put in a no-op instruction, but this is inefficient. Some architectures allow the
instruction in the delay slot to be ignored if the branch is taken. This avoids the need
to fill the delay slot with a no-op instruction, but undermines the purpose of delayed
branching. PowerPC architecture takes a unique approach to the branching problem,
as discussed later in the section “Branch Processor.”

SUPERSCALAR DESIGN
Another technique RISC designers use to increase performance is superscalar or
multi-issue design. The simpler design of RISC architectures makes it possible to
build in multiple processing units; this is superscalar design. In the same way that the
compiler can juggle instructions to avoid resource constraints, the CPU can now
reduce bottlenecks and achieve higher performance by feeding instructions to
separate processing units operating in parallel. This allows average instruction cycle
times to drop below one cycle per instruction. PowerPC microprocessors use this
technique as discussed later in the section “Functional Units of the PowerPC
Microprocessor.”

RISC ADVANTAGES
One last point needs to be made before leaving a comparison of CISC and RISC.
Many of the techniques used by RISC designers can and are used by CISC designers.
Modern CISC chips such as the MC68040 and Intel 80486 make extensive use of
instruction pipelining, parallel integer and floating-point units, fast cache
architectures, and resource constraint reduction (such as delayed writes) to achieve
the performance they do. But the sheer complexity of the designs means they’re hard
to implement (and implement correctly), which often results in long development
cycles. The simplicity of RISC architecture helps avoid this problem.

Similarly, the compiler can aid CISC machine performance. But the complexity of
CISC design means it’s nearly impossible to determine instruction timing, so it’s
difficult for the compiler to choose the best instruction sequence. Instruction
scheduling is also possible but more difficult. The finer granularity of the RISC



instruction set gives the compiler much more flexibility and control over the
resources provided by the CPU.

Simplified hardware and the influence of the compiler are really the ultimate
advantages of RISC.

POWERPC CPU ARCHITECTURE
PowerPC architecture is a modern 64-bit, RISC architecture adhering to all the
previously discussed design goals. It has 32 general-purpose and 32 floating-point
registers. All instructions have a uniform 32-bit length. The first PowerPC
microprocessor, the PowerPC 601, is a superscalar implementation of the 32-bit
subset of this architecture.

POWERPC VERSUS POWER
The PowerPC microprocessor is a single-chip design descended from an earlier,
multichip IBM RISC implementation known as POWER. It’s worth mentioning the
differences between the two architectures.

• Misaligned data access. Most RISC architectures require all data
access to be word (4-byte) aligned. POWER was ambiguous
regarding data alignment. PowerPC architecture explicitly allows
misaligned data access but with a possible performance penalty.
The advantage is that it allows use of data structures aligned for
680x0 architecture.

• Elimination of the MQ register. POWER has a special-purpose
multiply/quotient (MQ) register for extended-precision integer
arithmetic. But since there’s only one register, it becomes a
bottleneck that hinders superscalar implementations. The MQ
register, and all instructions that depend on it, were eliminated
from the PowerPC architecture.

• Addition of single-precision floating point. POWER supports only
double-precision floating point. PowerPC architecture supports
single precision as well, which may be more appropriate for some
applications. (There’s no hardware support for 80- or 96-bit
extended floating point, which 680x0 developers are familiar with.
The consequences of this for developers are discussed in “Native
PowerPC Numerics.”)

• 64-bit architecture. POWER is a 32-bit architecture. PowerPC
architecture is fully 64 bit; however, the first implementations
feature a 32-bit subset of the architecture. Code written for 32-bit
processors will be fully supported on 64-bit implementations
running in 32-bit mode.
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Developers dependent on floating point who port to the
PowerPC platform will enjoy superior floating-point
performance. However, some special consideration is
needed, because the floating-point implementation on the
PowerPC processor differs from that of the 680x0
processors.

POWERPC ARCHITECTURE FEATURES
The PowerPC microprocessor floating point is an 
IEEE 754–compliant single- and double-precision
implementation offering fast, pipelined, nondestructive
floating-point operations. These operations are add,
subtract, multiply, divide, compare, convert to int, and a
new class of multiply-add fused (MAF) instructions of the
form

frT ← (frA * frB) + frC

where fr is a floating-point register. In MAF operations, all
bits of the resultant multiply section are kept (106 bits in
double) and participate in the final rounding, producing 
a more exact result. In other words, (A * B) + C is a
single operation with one rounding. The compilers on 
the PowerPC platform use MAF instructions wherever
possible, unless expressly prohibited by the user.

The PowerPC microprocessor has a rich set of floating-
point register files: 32 floating-point double-precision data
registers and a combined status and control register
(unlike the MC6888x or MC68040).

C PROGRAMMER’S MODEL
The PowerPC microprocessor shared math library,
MathLib, complies with the emerging Floating-Point C
Extensions (FPCE X3J11.1/93-001) of the Numerical C
Extensions Group (NCEG) specification. FPCE extends C
to provide access to floating-point features generally and
IEEE 754/854 specifically. FPCE provides a superset of
math.h and sane.h functionality. The new required include
files are fp.h and fenv.h. 

NATIVE POWERPC NUMERICS
BY ALI SAZEGARI
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The FPCE fp.h file is a collection of mathematical
functions. It defines all math.h and nonenvironmental
sane.h functionality plus hyperbolic, inverse hyperbolic,
max, min, positive difference, error, and gamma
functions. Other functions round floating-point numbers to
integral values or integral format. An extensive array of
correctly rounded binary-to-decimal conversion functions
is provided.

The FPCE fenv.h file defines all the functions used to query
or modify the floating-point environment (exception flags
and rounding direction). 

The include file math.h is kept for ANSI C compliance, but
developers are encouraged to use fp.h and fenv.h. The
sane.h include file won’t be supported. Be aware of
function name and prototype differences between SANE
and FPCE-NCEG interfaces. For example, the functions
copysign and scalb have reversed arguments in the new
fp.h, and log1 is now called log1p.

FP DATA TYPES
Table 1 lists the available native data types on the
PowerPC microprocessor. There’s no hardware or
compiler support for the 80- or 96-bit IEEE extended
values commonly used by Macintosh programmers.
Developers should use 64-bit double as their native data
type and use rescaling techniques within their algorithms
susceptible to numerical ill-conditioning. The 64-bit comp
type, a floating-point data type available on the 680x0-
based Macintosh, isn’t supported. Use the data type long
double judiciously and only when an algorithm requires
the extra precision. SANE data types, which include
extended and comp, are fully supported in emulation
mode on PowerPC processor–based Macintosh systems.

The transcendental long-double functions are not
supported for the first release of MathLib on PowerPC
processor–based Macintosh systems. A complete long-
double library is planned for a later release.
Stuart McDonald
erPC Numerics.”•



Table 1
Available Native Data Types on the PowerPC Microprocessor

Native Data Type Description
float IEEE single precision (32 bits with fast operations)
double IEEE double precision (64 bits with fast operations)
long double 128-bit structure of two doubles (head and tail), whose value is head + tail. Not

an IEEE double-extended type! Provides additional precision within double range.

Note: The long double data type isn’t supported by the hardware, so operations are relatively slow. It should
be used selectively.
PowerPC architecture uses big-endian byte order, just like 680x0 and POWER. As
an added feature, it also supports a mode using little-endian byte ordering and
provides instructions to allow access to little-endian data from big-endian mode and
to big-endian data from little-endian mode.

FUNCTIONAL UNITS OF THE POWERPC MICROPROCESSOR
Figure 7 is a block diagram of the PowerPC 601 microprocessor, the first member of
the PowerPC processor family. This microprocessor is a superscalar PowerPC
implementation, with three separate execution units: the fixed-point and floating-
point units and the branch processor. The branch processor initiates instruction
execution by fetching instructions from the instruction cache (which is filled from
memory if there are no instructions in it). The branch processor then feeds integer
and floating-point instructions to the fixed-point and floating-point units
respectively. These units operate on data in registers and in the data cache (which is
filled from memory if there’s no data in it). The fixed-point unit is also involved in
address decode operations.

BRANCH PROCESSOR
The branch processor deserves special attention. As mentioned earlier, PowerPC
architecture takes an original approach to the problem of branch penalties, and the
branch processor is responsible for this. The branch processor contains within it
everything needed to determine how to handle a branch instruction. This includes
three special-purpose registers: 

• The condition register (CR) has flags set by certain operations and
is used for conditional branching.

• The link register (LR) can contain a destination address for a
branch instruction and can also hold the return address after
branch and link (subroutine) instructions.

• The count register (CTR) is used for looping and indirect branches.
MAKING THE LEAP TO POWERPC  December 1993
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For unconditional branches, the branch processor knows unambiguously which path
to take. For conditional branches, if a branch condition is set far enough before the
actual branch instruction, the branch processor has the information necessary to
determine which path to take.

The design of the condition register uniquely aids the processing of conditional
branches. Instead of a single set of condition codes, it contains eight 4-bit condition
code fields, designated CR0, CR1 . . . CR7. Compare operations allow each field to
be set independently. A compiler using these multiple, independent condition code
fields has more flexibility in scheduling instructions to assist the branch processor. As
an additional performance enhancement, instructions that might set condition codes
(such as add) do so only if a record bit is set in the instruction, so time isn’t spent
setting condition codes that would otherwise be ignored.

The branch processor also has knowledge of the count register, used in looping
operations. This lets the branch processor know in advance when a loop will 
finish.

With this design the branch processor can preprocess the instruction stream and, in
most cases, determine in advance the target of the branch operation. This allows it to
“fold” the branch instruction out of the instruction stream, so the fixed-point and

Branch processor

Floating-point unit Fixed-point unit 

Data cache

Memory

Instruction cache

Address DataData

Figure 7
Block Diagram of PowerPC 601 Chip



floating-point units see an unbroken stream of instructions and fewer branch
penalties occur.

POWERPC RUNTIME ARCHITECTURE
An important goal in the development of Apple’s PowerPC processor–based
machines was to preserve user and developer investment in the 680x0 architecture.
Another important goal was to port the existing 680x0 Toolbox and operating system
to the new platform quickly. Both goals were met through the ability to emulate
680x0 instructions in software on the PowerPC microprocessor. So the first way to
view a Macintosh on PowerPC, and indeed the way existing applications and system
software view this machine, is as a 680x0-based Macintosh. In this section we
approach this new beast through the 680x0 emulator and then peel away the layers to
reveal the underlying PowerPC runtime architecture.

SOFTWARE EMULATOR
The software emulator understands and executes the instruction set of a Motorola
MC68020 processor. You might wonder why Apple chose to emulate the MC68020
and not the latest and greatest processors such as MC68030 and MC68040. 

• The only advantage of the 68030 over the 68020, in terms of
instruction set, is the integrated memory management unit
(MMU). The MMU is really for use by the operating system for
implementing features such as virtual memory. The PowerPC
microprocessor MMU operation is very different from 680x0
MMU operation, and there’s no need for applications to execute
MMU instructions anyway. Applications needing control over
virtual memory can still use the existing virtual memory interface;
just the implementation will be different.

• Similarly, the key advantage of the MC68040 over its predecessors
is the integrated floating-point unit. The PowerPC
microprocessor has its own floating-point implementation. Apple
already provides a standard numeric interface for 680x0
applications, called SANE, and emulating floating-point
instructions using native PowerPC code offers no real advantages
over implementing SANE as native PowerPC code.

As a bonus feature, the emulator also supports certain advanced user-mode
instructions such as the MOVE16 instruction from the MC68040. However, from a
programmer’s point of view, the emulator behaves as an MC68020 (for example,
Gestalt reports an MC68020 is present) and developers are advised not to take
advantage of any features outside the MC68020 architecture.

Once the emulator was up and working, the PowerPC processor–based machine
almost immediately gained an operating system, since all the code in the ROM and
MAKING THE LEAP TO POWERPC  December 1993
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the operating system was now executable. This also gave the machine a high degree
of compatibility with older Macintosh models, because the same code, with all its
idiosyncrasies, is being executed.

Had Apple stopped here, you’d have a machine that works great but is pretty boring.
After all, who wants a machine that pretends to execute 680x0 code, but not
necessarily as fast as the real thing? Why not get a real 680x0 machine instead? The
answer, of course, lies in tapping into the power behind the emulator — the
PowerPC microprocessor itself. 

TOOLBOX ACCELERATION
All Macintosh applications spend part of their time calling the Macintosh Toolbox. In
turn, the Toolbox performs the requested service by executing Toolbox code on
behalf of the application. You can think of the Toolbox as an extension of the
application. The advantage of this during development of PowerPC processor–based
machines is that selectively replacing portions of the Toolbox with equivalent
PowerPC code greatly enhances the performance of those portions of the Toolbox.
All applications that use those routines benefit from improved performance. No
modification of the application is required to receive the benefit.

Ideally, of course, it would be best if the entire Toolbox executed as native code. But
that requires a huge amount of work and would delay the first release of Macintosh
on PowerPC. Analysis of application programs revealed that some portions of the
Toolbox are used more heavily than others. All applications, for example, rely heavily
on QuickDraw. Effort spent porting QuickDraw would benefit more applications
than, say, porting the Dialog Manager. So the first release of Macintosh on PowerPC
will target the portions of the Toolbox that will provide the greatest performance
enhancement to the greatest number of applications.

As Apple releases new versions of the system, with more and more of the Toolbox as
native PowerPC code, users will magically get a “faster” machine without adding new
hardware. All they have to do is install the newer, accelerated Toolbox.

At the same time, the goal is not just to enhance the performance of the system, but
to empower application software as well. The accelerated Toolbox is a start, but real
PowerPC application performance comes from having native PowerPC applications,
and the first release of Macintosh on PowerPC will include an entirely new runtime
architecture in support of native applications.

WHY A NEW RUNTIME ARCHITECTURE?
The new runtime architecture addresses many of the following limitations of the
680x0 architecture:

• The first Macintosh models were severely limited in the memory
available to applications, so the runtime architecture was designed



to squeeze the most out of the memory that was available. Today,
the relative availability of cheap RAM removes this limitation.

• Hard disks and memory management units required to support
virtual memory were unavailable, so applications were required to
load discrete blocks of code through the Segment Loader. With
the relative availability of cheap RAM and support for virtual
memory, most reasons for having the Segment Loader disappear. 

• The system now supports a wide variety of code types — not just
applications and system software, but standalone code blocks, such
as INITs and MDEFs, and loadable code plug-ins, such as
XCMDs and components. These code blocks strain the runtime
architecture because it’s difficult to manage global data for these
blocks and to import and export functions between blocks. 

• There’s a large amount of code duplication in the Macintosh. The
Toolbox provides some code sharing between applications, but in
general, most applications have built into them large amounts of
redundant code. For example, library and glue code gets linked
into every application. Having it built into the application
increases demands on disk and memory resources because each
instance of the application must have the duplicated code.

CODE FRAGMENT MANAGER
The centerpiece of the new architecture is the Code Fragment Manager. Each block
of executable PowerPC code is a code fragment. A code fragment is autonomous,
with its own static data. It can export both code and data references for use by other
fragments and import code and data references from other fragments for its own use.
Because such references are resolved at run time, code fragments are a form of
dynamically linked, shared libraries. (See “Code Fragment Manager or Shared
Library Manager?” for an explanation of the relationship between the two managers.)

From a native PowerPC application’s point of view, access to the Macintosh Toolbox
now occurs through a shared library maintained by the Code Fragment Manager.
Applications no longer have segments — they have one or more code fragments. The
main code fragment is loaded at launch time and any external references to other
shared libraries are resolved. An application neither knows nor cares whether a
reference is internal or external; access is completely transparent.

In some cases applications may want to manage code fragments on their own. For
example, standalone code resources can now be handled as code fragments. This
makes code resources such as XCMDs much easier to develop. Not only does such a
resource have its own static data, but function references within the resource are fully
exportable. Complicated parameter blocks aren’t needed for passing data or jumping
into the beginning of a code resource. Furthermore, because the application code is
MAKING THE LEAP TO POWERPC  December 1993
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You may already be familiar with an implementation of
shared libraries for the Macintosh known as the Shared
Library Manager. The advantage of the Shared Library
Manager is that it works with today’s 680x0 runtime
architecture. The Code Fragment Manager, on the other
hand, lays the foundation for a new and more modern
runtime architecture.

The first releases of these two managers will be mutually
exclusive. The Shared Library Manager will be

CODE FRAGMENT MANAGER OR SHAR
d e v e l o p Issue 16
implemented only for 680x0 and the Code Fragment
Manager will work only on the PowerPC microprocessor.

In the future, though, the Code Fragment Manager will be
available on 680x0-based machines as well, and a future
release of the Shared Library Manager (version 2.0) will
be built on top of the Code Fragment Manager. This will
provide Shared Library Manager support for Macintosh
on PowerPC. Developers should code for whichever
mechanism best suits their needs and target platform.

ED LIBRARY MANAGER?
itself a code fragment and can export its references, the standalone code has access to
functions and data within the application itself. Complicated callback mechanisms are
no longer necessary.

MIXED MODE MANAGER
There’s one final piece to the PowerPC architecture puzzle. The Macintosh Toolbox
makes wide use of pointers to functions. FilterProcs, I/O completion routines, A-trap
vectors, QuickDraw bottlenecks, definition procedures (such as MDEFs, MBDFs,
and CDEFs), and other types of standalone code (such as INITs and VBL tasks) are
just a few examples of the wide variety of function pointers in use on the Macintosh. 

On a 680x0-based Macintosh, life is easy because a function pointer is just the address
of a 680x0 routine that can be called. On a PowerPC processor–based Macintosh, life
is much more complicated; not only is the Toolbox a mixture of 680x0 and PowerPC
code, but a function pointer could be a pointer to 680x0 code or PowerPC code and
the caller should neither know nor care what kind of code it’s calling.

To handle this situation, Apple is introducing the Mixed Mode Manager. One
problem that this manager must solve is the mismatch between calling conventions
for 680x0 and PowerPC code. PowerPC code follows C conventions, with
parameters passed right to left. The 680x0 code uses a variety of calling conventions:
some traps are register based while some are Pascal stack based with parameters
passed left to right. The Mixed Mode Manager must make calls between disparate
functions seamless. Furthermore, it must do it in a way that’s compatible with existing
680x0 applications. Since existing binaries must work unmodified, the existence of the
Mixed Mode Manager must be completely transparent to these applications.

The Mixed Mode Manager’s task is shown in Figure 8. Instead of passing a function
pointer of type ProcPtr to the Toolbox, applications must now pass a function pointer



of type UniversalProcPtr. UniversalProcPtr is a generic version of ProcPtr that lets
the Mixed Mode Manager know how to route the call. Whenever 680x0 or PowerPC
code calls a function through a UniversalProcPtr, the Mixed Mode Manager looks at
the destination for the call. If a mode switch isn’t necessary — in other words, if both
the caller and the callee are the same code type — the Mixed Mode Manager does
nothing and just passes the call to the caller.

If a mode switch is necessary — in other words, if a 680x0 caller is calling PowerPC
code, or vice versa — the Mixed Mode Manager performs a protocol conversion,
rearranging the parameters, including moving them into or out of registers as
necessary to ensure that the callee sees the parameters correctly. When the callee
returns, the Mixed Mode Manager performs a protocol conversion in the other
direction to ensure that return values are correctly passed back to the caller.

For 680x0 applications, the Mixed Mode Manager is completely transparent and
these applications run without modification. PowerPC applications, however, must
become aware of the Mixed Mode Manager. The basics of using the Mixed Mode
Manager are covered along with UniversalProcPtrs later in the section
“UniversalProcPtrs.” 

WRITING PORTABLE C CODE
The preferred development languages for PowerPC code are C and C++. Therefore,
the first step in preparing for the PowerPC platform is to provide portable C and
C++ code. The examples here use C, but the principles apply to C++ as well.

Protocol

conversion by the


Mixed Mode Manager

680x0 caller PowerPC caller

Result Result
UniversalProcPtr

PowerPC parameters

UniversalProcPtr

680x0 parameters

680x0 callee PowerPC callee

Result Result

ProcPtr

PowerPC parameters

ProcPtr

680x0 parameters

Figure 8
Mixed Mode Manager
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The compilers for PowerPC C code are stricter than either the MPW or the
THINK C compiler, so the best way to prepare your code for the PowerPC platform
is to be sure it follows the ANSI C standard. You should take full advantage of the
stronger type checking and prototyping features an ANSI C compiler provides.

Consistent use of function prototypes is the best way to ensure portable code. ANSI
C prototypes fully qualify the parameters to a function, as shown in this example:

void DoEvent (EventRecord *event);

It’s usually permissible to mix the new-style function declaration with the old-style
function definition:

void DoEvent (event)
EventRecord *event;
{

. . .
}

However, mixing function declarations in this way typically defeats the purpose of
having a function prototype in the first place. So the first step in writing portable
code is to be sure you consistently use ANSI C function prototypes throughout.

INTEGERS AND BITFIELDS
Variations in the size of integers of type int always cause trouble when you’re trying
to port code. This is more of a problem for THINK C code, which allows 16-bit
integers of type int. C purists may not agree, but my recommendation is never to use
type int. Always use integers of types short and long (or an equivalent type). The
Macintosh Toolbox itself is explicit about data sizes, and experience has shown that
developers dependent on the THINK C 16-bit integers of type int have more
difficulty porting to the PowerPC platform.

A similar caution applies to bitfields. Bitfields are useful for access to machine-
dependent data structures and the like, but are inherently implementation defined
and therefore nonportable. 

DATA STRUCTURES
Some compilers allow incomplete arrays as the last member in a data structure:

struct QElem {
struct QElem *qLink;
short qType;
short qData[];

};
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This isn’t allowed by the ANSI C standard. Here’s a more portable definition:

struct QElem {
struct QElem *qLink;
short qType;
short qData[1];

};

Similarly, some compilers allow comparison of data structures. Again, this isn’t
allowed by the ANSI C standard, so attempting to do something as simple as
comparing two Rects will fail on the compilers for PowerPC code.

When using data structures, you need to be aware of data alignment. RISC machines
prefer (and often require) that data be aligned on a 4-byte boundary. But on the
680x0, the default is to align data to a 2-byte boundary. PowerPC architecture
specifically allows misaligned data access, but there can be a small performance
penalty if multiple bus cycles are required for access to the data. This creates a
dilemma: portability versus performance. 

Because the Macintosh Toolbox relies on 680x0 data structures, data passed to the
Toolbox must have 680x0 alignment. The same applies if you want to share data with
680x0 applications. To solve this, the compiler now allows you, through #pragma
statements and compiler options, to align PowerPC code data structures just like
680x0 code data structures. But if the structure is only internal to your application,
you probably want to use the natural PowerPC code alignment. Although it’s likely to
be painful to modify existing data structures for PowerPC code alignment, if you’re
designing new data structures, you can keep the alignment issue in mind and create
structures that are optimal for both 680x0 and PowerPC processor–based machines.

COMPILER EXTENSIONS
In addition to supporting 680x0 data alignment, compilers for PowerPC code have
been extended in several other ways to make porting easier. This involves supporting
several of the MPW C compiler extensions and features:

• The compiler understands “\p” at the start of a string for the
generation of Pascal strings.

• The pascal function keyword is allowed by the compiler, but
ignored. A subtle consequence of this is discussed in the section
“Pascal Functions.”

• The compiler won’t complain if you use C++ style line-end
comments (//).

• MPW C packs enums into the smallest data type possible and the
compilers for PowerPC code have been extended to support the
feature.
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How can you tell if your code is ANSI C compliant? You can eliminate many of the
idiosyncrasies in your code by compiling it with multiple compilers. Code
conditioned in this way is much more portable to the PowerPC platform than code
dependent on a single compiler. So one of the best ways to prepare for the PowerPC
platform is to make sure your code compiles and runs with both MPW C and
THINK C.

WRITING CODE FOR POWERPC
Some changes to the programming model are necessary for the development of
PowerPC code. However, Apple tried to limit changes so as to make the transition to
the PowerPC platform easier for developers (see “Universal Interfaces” to understand
how these changes affect development for 680x0 platforms). 

COMPATIBILITY GUIDELINES
Everything ever written about compatibility guidelines for the Macintosh applies to
the Macintosh on PowerPC in spades. Here are some of the key points:

• The code must be 32-bit clean. Most applications now satisfy this
requirement, thanks to System 7, but it deserves reiterating
because 24-bit mode will no longer be an option. 

• For the first release of Macintosh on PowerPC, access to low
memory is allowed exactly as before. Direct access to low memory
applies for both 680x0 and native PowerPC applications; however,
a procedural interface is provided as part of the new API, and
developers are strongly urged to begin using it for future
compatibility. For example, CurDirStore is a commonly used low-
memory global, and two new functions are defined to provide
access to it:

long LMGetCurDirStore (void);
void LMSetCurDirStore (long CurDirStoreValue);

• Don’t depend on undocumented data structures. Also, don’t
depend on alignment of data structures.

• Don’t write data into code. In the past, this was often necessary
because of limitations of the runtime architecture. Many of the
reasons for doing it no longer exist with PowerPC architecture, so
avoid it.

• Beware of dependencies on floating-point data types (see “Native
PowerPC Numerics,” earlier in this article).

• Don’t depend on the hardware. Not only is there no longer a
680x0 CPU present, but the I/O architecture can also change. Use
programmatic interfaces to perform I/O.



As Apple takes the Macintosh experience to a new chip
architecture, it becomes more important than ever to have
portable source code. With that in mind, Apple has
created a set of universal interface files, which are
provided on this issue’s CD. The same interface file — for
example, Windows.h — can be used to compile any
source file for a Macintosh on either a 680x0 or a
PowerPC microprocessor. The main changes you’ll find in
the C universal interface files are described below.

All system software routines declared extern.
On the PowerPC platform, all routines can potentially be
in a shared library, so all routines must be declared extern
in order for the compiler to generate the correct code.
Declaring routines extern is also compatible with MPW C.

Inline code wrapped in macro definitions.
Obviously, 680x0 inline code isn’t very useful on a
PowerPC platform. 680x0 inline code is isolated by
macros such as THREEWORDINLINE, which are defined
in ConditionalMacros.h. These macros expand to inline
initializers when compiling for 680x0 on non–shared
library based platforms, and do nothing when compiling
for PowerPC or shared library–based platforms.

UniversalProcPtrs. As discussed more fully in this
article, the biggest change in the interface files is the
introduction of the UniversalProcPtr data type used by the

UNIVERSAL INTERFACES
BY DEAN YU
Mixed Mode Manager. In support of cross-platform code
generation, the interface files define special “New” and
“Call” macros (such as NewGrowZoneProc and
CallGrowZoneProc) that hide the implementation details
of using UniversalProcPtrs. For example, when you
compile your application as 680x0 code, the Call macros
jump to the routine pointed to by the UniversalProcPtr
directly rather than invoke CallUniversalProc as they
would for PowerPC compilation. Note that 680x0
versions of the Call macros are provided only for stack-
based ProcPtrs.

Low memory access. To isolate dependencies on low
memory, the SysEqu.h file has been removed and
replaced by LowMem.h, which defines accessor functions
for low memory. Previously defined accessor functions,
such as MemError, are still defined but call through to the
new accessor functions when appropriate.

Structure alignment. To maintain data structure
compatibility, structs follow 680x0 word alignments when
being compiled for the PowerPC microprocessor.

Even if you don’t plan on porting your application
immediately to the PowerPC platform, you can begin
using the universal interface files for 680x0 development
and make a crucial step toward future PowerPC
compatibility.
• Don’t depend on the 680x0 runtime model, which is very
idiosyncratic. Fortunately, many of those idiosyncrasies were
eliminated in the PowerPC runtime architecture, making your life
easier but complicating the move from the 680x0 to this new
architecture.

Some of these points are discussed in the following sections.

REVISITING THE CODE FRAGMENT MANAGER
As previously mentioned, the centerpiece of the PowerPC runtime architecture is the
Code Fragment Manager. Rather than having a collection of code resources, a
MAKING THE LEAP TO POWERPC  December 1993

25



d e v e l o p Issue 16

26
PowerPC application has a code fragment (generally one, but possibly more) that
lives in the data fork of the application. When an application is launched, the Process
Manager determines whether a native PowerPC code fragment is present by looking
for a 'cfrg' resource. This resource provides the necessary information for the Code
Fragment Manager to load the main code fragment and resolve any external code and
data references. The Code Fragment Manager also sets up global data for the code
fragment.

The Code Fragment Manager eliminates the need for a segment loader. If virtual
memory isn’t present, the Code Fragment Manager loads the entire code fragment
into memory; otherwise, it relies on virtual memory to page code directly in from the
application when needed.

A 680x0 application maintains a notion of an A5 world, an integral part of the 680x0
runtime environment. Register A5 provides access to four kinds of data:

• application global data

• application QuickDraw global variables

• application jump table

• application parameters

Of these, only the QuickDraw global variables remain relevant. A wide variety of
system and application code depends on using A5 to locate QuickDraw globals. Even
though a native application has no use for a 680x0 register A5, the system still
maintains an A5 world so that code that does depend on A5 has access to the right
data. This means SetCurrentA5 and SetA5 will do the right thing with QuickDraw
globals if you need to swap A5 worlds.

The 680x0 Macintosh Toolbox uses a wide variety of calling conventions. The two
most common ones are Pascal stack based and register based. Variations include
passing a selector to dispatch to a variety of functions or passing a pointer to a
parameter block in register A0 (for VBL tasks, notification tasks, and I/O completion
routines) or register A1 (for Time Manager tasks). Two of my personal favorites are
the TextEdit highHook and caretHook routines: when called they have a pointer to
the edit record in A3 and, instead of a return address, a pointer to a rectangle on top
of the stack. The point is that it’s nearly impossible to write 680x0 Macintosh
applications entirely in a high-level language. Some assembly-language programming
is required just to move these weird parameters around.

Life gets much easier on the PowerPC platform, which relies on uniform C calling
conventions for everything. In almost all cases, 680x0 inline assembly and assembly
wrapper routines can be rewritten in C for PowerPC code. For example, a 680x0
application can use the following assembly highHook routine to underline a
selection:



HighHookUnderline
MOVE.L (SP),A0 ; Get the address of the rectangle
MOVE bottom(A0),top(A0) ; Make the top coordinate equal to
SUBQ #1,top(A0) ;  the bottom coordinate minus 1
_InverRect ; Invert the resulting rectangle
RTS

It’s impossible to write this routine in C because of the weird calling conventions that
supply the pointer to the Rect on top of the stack. For a native PowerPC application,
the two parameters are simply specified as standard C parameters and the following
routine suffices (the TEPtr parameter isn’t used in this example):

void HighHookUnderline (Rect *boundsRect, TEPtr pTE)
{

boundsRect->top = boundsRect->bottom - 1;
InvertRect(boundsRect);
return;

}

PASCAL FUNCTIONS
Although the compilers for PowerPC C code were extended to accept the pascal
keyword for source code compatibility with 680x0 Macintosh code, when the
compiler encounters this keyword, it does absolutely nothing. Unlike MPW C, where
the keyword alters parameter ordering and changes how some parameters are passed,
the compilers for PowerPC code ignore the pascal keyword. In most cases this is not
a problem, but there can be some subtle consequences. For example, consider the
following Apple event handler:

pascal OSErr DoAEAnswer (AppleEvent message, AppleEvent reply,
long refCon);

An Apple event record is larger than four bytes, so in Pascal it’s automatically passed
by reference. Because DoAEAnswer is declared as a pascal function, MPW C
handles the parameter in the same way. But the compilers for PowerPC code treat it
as a standard C data structure and pass it by value. So if DoAEAnswer were called by
the Apple Event Manager, bizarre things would happen.

To be compatible with both types of compilers, you must explicitly make these
parameters pointers, as follows:

pascal OSErr DoAEAnswer (AppleEvent *message, AppleEvent *reply,
long refCon);

When in doubt, check the new interfaces; they now declare special function pointers
of type ProcPtr that specify the correct parameters.
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typedef pascal OSErr (*EventHandlerProcPtr)(const AppleEvent 
*theAppleEvent, const AppleEvent *reply, long handleRefCon);

Unfortunately, in most cases you’ll now be coercing any special ProcPtrs (such as
EventHandlerProcPtr) into normal ProcPtrs for calls to NewRoutineDescriptor
(described in the next section), which means type checking will be lost. So double-
check all your callback routines.

UNIVERSALPROCPTRS
Because of the introduction of the Mixed Mode Manager, the single biggest change
you’ll have to make to your code is converting function pointers of type ProcPtr to
type UniversalProcPtr. Every place in the interfaces where a type of ProcPtr was
declared, Apple added a similar declaration of type UniversalProcPtr. 

UniversalProcPtr is a generic function pointer. For 680x0 code, a UniversalProcPtr is
just a 680x0 ProcPtr. For native PowerPC code, though, a UniversalProcPtr is a
pointer to a data structure called a routine descriptor, which in addition to providing a
function reference, supplies all the information the Mixed Mode Manager needs to
transform parameters back and forth between 680x0 and PowerPC worlds. Because a
UniversalProcPtr is no longer a simple function reference, there are issues of
allocation and scope that make it more complicated to use than a simple ProcPtr.
Fortunately, 680x0 interfaces are being changed to add UniversalProcPtr support, so
changes you make for PowerPC code will also be compatible with 680x0 interfaces
(see “Universal Interfaces” earlier in this article).

Let’s look at a simple example using a UniversalProcPtr. Suppose you have an action
procedure for a vertical scroll bar, called VActionProc. Current code would call
TrackControl with that action procedure as follows:

TrackControl(ctlHit, mouseLoc, VActionProc);

With PowerPC code, you must create a routine descriptor for VActionProc. Because
there’s usually a one-to-one correspondence between function pointers of type
ProcPtr in your code and function pointers of type UniversalProcPtr required by the
Mixed Mode Manager, it’s simplest to allocate one UniversalProcPtr for each ProcPtr
you use. The memory impact of this approach is small because a routine descriptor
data structure typically uses only 32 bytes.

One way to do this is to allocate the routine descriptor statically and have it initialized
by the compiler. Macros are supplied in MixedMode.h for this purpose. For example,
you can create a routine descriptor for VActionProc like this:

RoutineDescriptor gVActionProcRD =
BUILD_ROUTINE_DESCRIPTOR(uppControlActionProcInfo, VActionProc);



Alternatively, you can allocate your routine descriptors on the heap. Again, because
they seldom change, you’ll generally want to allocate them at application startup:

ControlActionUPP gVActionUPP;

gVActionUPP = NewRoutineDescriptor((ProcPtr)VActionProc,
uppControlActionProcInfo, GetCurrentISA());

NewRoutineDescriptor is declared as follows:

UniversalProcPtr NewRoutineDescriptor(ProcPtr theProc, 
ProcInfoType theProcInfo, ISAType theISA);

NewRoutineDescriptor allocates nonrelocatable storage for the routine descriptor on
the heap and returns it as a pointer to the routine descriptor in the form of a
UniversalProcPtr. The theProc parameter is just the function pointer for the function
you’re referring to and theProcInfo is a 32-bit value that tells the Mixed Mode
Manager how to convert parameters back and forth. Every UniversalProcPtr type has
defined for it a corresponding ProcInfoType value. So the ProcInfoType value for
ControlActionUPP is uppControlActionProcInfo. The third parameter, theISA,
specifies the current instruction set architecture (ISA) in use. For portable code,
simply call GetCurrentISA to get the appropriate ISA type. If you know you’re
dealing with a specific code type — for example, a 680x0 code resource — you can
call NewRoutineDescriptor and specify the proper instruction set type — for
example, kM68kISA for 680x0 code.

To simplify creation of function pointers of type UniversalProcPtr, the new interfaces
also define macros that call NewRoutineDescriptor for you and automatically specify
the ProcInfoType value:

gVActionUPP = NewControlActionProc((ProcPtr) VActionProc);

If you created the routine descriptor statically, you can pass the address of the
structure to TrackControl:

TrackControl(ctlHit, mouseLoc, (ControlActionUPP) &gVActionProcRD);

If, instead, you created a UniversalProcPtr on the heap, you can use it directly in
TrackControl:

TrackControl(ctlHit, mouseLoc, gVActionUPP);

If you allocate a UniversalProcPtr statically, you don’t have to worry about
deallocating it, because that will happen when the application quits. You could also
allocate it locally, which you might want to do if the routine were unlikely to be
MAKING THE LEAP TO POWERPC  December 1993

29



d e v e l o p Issue 16

30
called. In that case, you would have to explicitly deallocate the routine descriptor
before leaving the function, as follows:

DisposeRoutineDescriptor(gVActionUPP);

A potential problem with disposing of routine descriptors is that you could dispose of
them before they’re used. For example, if you have a routine descriptor for an
asynchronous I/O completion routine, disposing of the routine descriptor before the
completion routine is called would be bad. 

An alternative for infrequently used routine descriptors is to allocate them globally
but initialize them only when needed, as in this example:

if (!gVActionUPP)
gVActionUPP = NewControlActionProc((ProcPtr) VActionProc);

TrackControl(ctlHit, mouseLoc, gVActionUPP);

In most cases you won’t need to call a UniversalProcPtr yourself; you’ll simply pass it
to the Toolbox. But should you need to call one from PowerPC code, you can’t
simply treat it as a function pointer. You must use CallUniversalProc to have the
Mixed Mode Manager call the function for you. CallUniversalProc is declared as
follows:

long CallUniversalProc(UniversalProcPtr theProcPtr,
ProcInfoType procInfo, ...);

The first two parameters, the UniversalProcPtr and the 32-bit ProcInfoType value,
are followed by all the additional parameters normally passed to the call. To simplify
calling UniversalProcPtrs, special macros have been included in the interfaces for
each UniversalProcPtr data type. For example, gVActionUPP above could be called
using CallControlActionProc: 

CallControlActionProc(gVActionUPP, theControl, partCode);

One special case of a UniversalProcPtr deserves mention because it can’t be flagged
by the compiler. A wonderful feature of the Dialog Manager is that for a userItem,
the SetDItem call allows the item’s procedure pointer to be set via the item
parameter. Since you’re explicitly casting a ProcPtr to a handle, the compiler assumes
you know what you’re doing and doesn’t object. Of course, what you really need to
pass is a UniversalProcPtr, but since the compiler doesn’t catch this, strange things
will surely happen if you don’t catch it yourself.

As another example of using function pointers of type UniversalProcPtr, let’s look at a
VBL task. A persistent VBL task (one that works when the application is in the
background) is often implemented by copying the VBL task code into the system
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heap, an ugly solution and self-modifying code as well. A simpler solution for
PowerPC code is to create the UniversalProcPtr itself in the system heap since the
Process Manager views the UniversalProcPtr as code. The following code shows how
to install such a VBL task:

#define kVBLInterval 30

OSErr InstallVBL (VBLTaskPtr theVBLTask, VBLProcPtr myVBLProc, 
Boolean isPersistent)

{
OSErr theError;
THz savedZone;

/ *
* For a VBL task that operates when the application is in the
* background (i.e., that's persistent) we can simply create the 
* UniversalProcPtr in the system heap. This causes the Process 
* Manager to treat the code as though it were in the system heap 
* and the VBL will always get executed.
* /

if (isPersistent) {
savedZone = GetZone();
SetZone(SystemZone());

}
theVBLTask->vblAddr = NewRoutineDescriptor((ProcPtr) myVBLProc,

uppVBLProcInfo, GetCurrentISA());
theError = MemError();
if (isPersistent)

SetZone(savedZone); /* Restore the application zone. */
if (theVBLTask->vblAddr != nil) {

theVBLTask->qType = vType;
theVBLTask->vblCount = kVBLInterval;
theVBLTask->vblPhase = 0;
theError = VInstall((QElemPtr) theVBLTask);

}
return (theError);

}

The isPersistent Boolean variable controls whether the VBL functions persistently. If
it’s persistent, you can control where the memory is allocated by first setting the zone
to the system zone (because NewRoutineDescriptor calls the Memory Manager to
allocate memory for the routine descriptor).

Here’s the code for the VBL task:
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long gCounter = 0;

pascal void MyVBLProc (VBLTaskPtr theVBLTask)
{

theVBLTask->vblCount = kVBLInterval;
gCounter++;
return;

}

This very simple example alters only a global variable, but it illustrates two points.
First, no complicated setup for global variables is required. For a 680x0 VBL task,
messy saving and restoring of register A5 would be necessary for correct access to
global variables. In the example, because the code resides in a code fragment, global
variables are always accessible. Second, the procedure is called with a VBLTaskPtr
parameter. For a 680x0 VBL task, a pointer to the VBLTask record resides in register
A0 and requires special handling to get to the data from a high-level language.
Because PowerPC code uses strict C calling conventions, the required data is passed
as a standard parameter.

Finally, of course, you have to remove the VBL task correctly:

void RemoveVBL (VBLTaskPtr theVBLTask)
{

THz savedZone;

VRemove((QElemPtr) theVBLTask);
if (theVBLTask->vblAddr) {

savedZone = GetZone();
/* Make sure we're in the right zone. */
SetZone(PtrZone((Ptr) theVBLTask->vblAddr));
DisposeRoutineDescriptor(theVBLTask->vblAddr);
SetZone(savedZone);

}
return;

}

Although it may not be necessary to deallocate a VBL task created in the application
heap, this code practices safe memory management by being sure the memory gets
deallocated no matter where it is — in other words, whether it’s persistent or not.

TRAP PATCHING
Trap patching is fully supported on the PowerPC microprocessor; as always, however,
it must be undertaken with due care and consideration. Not only is the compatibility
risk higher (especially if you’re dependent on 680x0 runtime features), but



indiscriminate trap patching can severely affect the performance of the PowerPC
processor–based machine.

Trap patching is possible from both 680x0 code and PowerPC code, and you should
use the NGetTrapAddress and NSetTrapAddress calls in both cases. From 
PowerPC code, the address returned by NGetTrapAddress must be treated as a
UniversalProcPtr and you must pass a UniversalProcPtr to NSetTrapAddress as well.

What complicates the issue is that the trap you patch could be written in either 680x0
code or PowerPC code. The Mixed Mode Manager, of course, handles both cases,
but if you’re patching native PowerPC code with 680x0 code, performance-sensitive
code can suddenly run more slowly, not only because of your emulated code but
because of overhead associated with mixed mode transitions. So you must think very
carefully about the performance consequences of your patch.

TAKING A RISC
To ease the transformation of existing applications into native PowerPC applications,
Apple has minimized changes to the API. Most ANSI C compliant code, with the
exception of ProcPtrs, should recompile without modification. Developers can
exploit this opportunity to easily tap into the power of the PowerPC microprocessor.

With PowerPC processor–based machines, Apple is laying the foundation for the
future. The new levels of performance and new features such as the Code Fragment
Manager give developers new worlds to explore and new opportunities for adding
unique features to their applications.

RECOMMENDED READING
For more information on CISC and RISC architectures in general and POWER and
PowerPC architectures in particular, consult the following sources:

• Advanced Microprocessors by Daniel Tabak (McGraw-Hill, 1991).

• Computer Architecture and Computer Architecture Case Studies by Robert J. Baron
and Lee Higbie (Addison-Wesley, 1992). 

• Computer Architecture: A Quantitative Approach by David A. Patterson and John
L. Hennessy (Morgan Kaufman Publishers, 1990). 

• “PowerPC Performs for Less,” by Tom Thompson, Byte, August 1993.

• “RISC Drives PowerPC,” by Bob Ryan, Byte, August 1993.

• PowerPC 601 RISC Microprocessor User’s Manual (Motorola, 1993).
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